From 1 - 10 / 33
  • Categories  

    This is a blog (Workshop1, 30.04.14) on the UKCCSRC Call 1 project, Flexible CCS Network Development. Grant number: UKCCSRC-C1-40.

  • Categories  

    This project will produce and disseminate the first design and operating guidelines for the flexible operation of CCS pipeline networks. The research will explore how CCS pipeline networks can react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants, as well as responding to the constraints imposed on the system by the ability (or otherwise) of CO2 storage facilities to accept variable flow. The work will develop relevant scenarios for modelling the likely variability of CO2 flow in a CCS pipeline network, develop hydraulic models of CO2 behaviour, engage stakeholders in the process through practitioner workshops, and deliver guidelines to the industry and other interested stakeholders. Grant number: UKCCSRC-C1-40.

  • Categories  

    Simplified reservoir models are used to estimate the boundary conditions (pressure, temperature and flow) that are relevant to the primary aims of this project. A set of boundary conditions are defined at the wellhead that represent the behaviour of the store. Data relates to publication: Sanchez Fernandez, E., Naylor, M., Lucquiaud, M., Wetenhall, B., Aghajani, H., Race, J., Chalmers, H. Impacts of geological store uncertainties on the design and operation of flexible CCS offshore pipeline infrastructure (2016) International Journal of Greenhouse Gas Control, 52, pp. 139-154. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978197316&doi=10.1016%2fj.ijggc.2016.06.005&partnerID=40&md5=d567f0e06f561613554a1f1c2e230194 DOI: 10.1016/j.ijggc.2016.06.005

  • Categories  

    This poster on the UKCCSRC Call 1 project, Nano-seismic mapping at Aquistore, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-19.

  • Categories  

    This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-179. Pipelines are acknowledged as one of the most efficient and cost-effective methods for transporting large volumes of various fluids over long distances and therefore the majority of proposed schemes for Carbon Capture and Storage (CCS) involve high pressure pipelines transporting CO2. In order to manage the risk in the event of the failure of a carbon dioxide (CO2) pipeline, it is a core requirement that a separation distance between pipelines and habitable dwellings is defined to ensure a consistent level of risk. The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences to the surrounding population of a CO2 release from CCS transportation infrastructure. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. This poster presents some preliminary findings from the S-Cape project and: • Describes the development of analytical and Computational Fluid Dynamic (CFD) models to calculate the change in internal CO2 concentration within a building engulfed by a dispersing cloud of CO2. • Investigates the sensitivity of the CO2 concentration within a building to wind speed and the temperature of the CO2 in the pipeline. • Demonstrates how CFD models can be used to verify results obtained using computationally efficient analytical models.

  • Categories  

    This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • Categories  

    This dataset provides the linepacking times that have been generated for a set of pipeline dimensions, flow rates, lengths and pressure conditions. This work has been funded by the UK Carbon Capture and Storage Research Centre within the framework of the FleCCSnet project (UKCCSRC-C1-40). The UKCCSRC is supported by the EPSRC as part of the Research Councils UK Energy Programme (https://doi.org/10.1016/j.ijggc.2017.06.002). This dataset forms the basis of the work and analysis presented in the paper: Aghajani, H, Race, JM, Wetenhall, B, Sanchez Fernandez, E, Lucquiaud, M & Chalmers, H 2017, 'On the potential for interim storage in dense phase CO2 pipelines' International Journal of Greenhouse Gas Control.

  • Categories  

    The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • Categories  

    Raw CO2 and CH4 concentration data from a Picarro Cavity Ring Down Spectroscopy (CRDS) during experiments which tested the utility of methane as a tracer to quantify CO2 leakage into aqueous environments, as described in Myers, M., Roberts, J.J., White, C., and Stalker, L (2019) ‘An experimental investigation into quantifying CO2 leakage in aqueous environments using chemical tracers’ Chemical Geology

  • Categories  

    This poster on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-19. Injection of fluids into geological formations induces microseismic events due to pressure changes causing either opening mode or shear mode fracturing. Injection for CO2 storage is designed to be well below the pressures required for hydraulic fracturing. Due to the inherent heterogeneity of geological formations, some existing structures will be critically stressed so small microseismic events are inevitable. Current reservoir monitoring strategies either examine time-lapse variations in the rock’s elastic properties (4D seismic) over diffuse areas, or aim to detect leakage from diffuse and point sources at the seabed (e.g. the QICS project). The aim of the project is twofold: • test the potential of a new technology (nanoseismics) for passive seismic monitoring that aims to image focused flow pathways at depth of an active CO2 injection site: the Aquistore site, Canada; • use a multi-disciplinary approach to interpret passive seismic data sets obtained during operation of the same site.