From 1 - 10 / 34
  • Categories  

    This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-40.

  • Categories  

    The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences of a carbon dioxide (CO2) release from Carbon Capture and Storage (CCS) transport infrastructure to the surrounding population. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. The primary objectives planned to achieve this aim are: 1.To produce an indoor shelter model, based on ventilation and air change theory, which will account for both wind and buoyancy driven CO2 ventilation into a building. The model will be capable of incorporating varying cloud heights, internal building divisions, internal and external temperature differences and impurities. 2.To create an external escape model that will determine the dosage received by an individual exposed to a cloud of CO2 outdoors. The model will be capable of incorporating multi-decision making by the individual in terms of the direction and speed of running, wind direction, the time taken to find shelter and the time required to make a decision, on becoming aware of the release. 3.To build a Computational Fluid Dynamics (CFD) model describing the effects of ingress of a CO2 cloud into a multicompartment building. 4.To validate the indoor shelter model and the CFD model against experimental test data for a CO2 release into a single compartment building. 5.To validate the indoor shelter model against further CO2 ingress scenarios modelled with CFD. 6.To conduct a sensitivity study using the shelter and escape models to calculate the dosage that an individual will be expected to receive under different conditions building height, window area, wind direction, temperature gradient, wind speed, atmospheric conditions, building size, running speed, direction of travel and reaction time. 7.To illustrate how the output from the models, in terms of dosage, can be used as input to Quantitative Risk Assessment (QRA) studies to determine safe distances between CO2 pipelines and population centres. 8.To demonstrate how the output from the models, in terms of dosage, can be used as input to the development of emergency response plans regarding the protection afforded by shelter and the likely concentrations remaining in a shelter after release. 9.To disseminate the findings of the research to relevant stakeholders through publication of academic journal papers as well as presentations at conferences, UKCCSRC meetings and relevant specialist workshops. Grant number: UKCCSRC-C2-179.

  • Categories  

    This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C2-179.

  • Categories  

    This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • Categories  

    This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Workshop1, 30.04.14. Grant number: UKCCSRC-C1-40.

  • Categories  

    This dataset provides the linepacking times that have been generated for a set of pipeline dimensions, flow rates, lengths and pressure conditions. This work has been funded by the UK Carbon Capture and Storage Research Centre within the framework of the FleCCSnet project (UKCCSRC-C1-40). The UKCCSRC is supported by the EPSRC as part of the Research Councils UK Energy Programme (https://doi.org/10.1016/j.ijggc.2017.06.002). This dataset forms the basis of the work and analysis presented in the paper: Aghajani, H, Race, JM, Wetenhall, B, Sanchez Fernandez, E, Lucquiaud, M & Chalmers, H 2017, 'On the potential for interim storage in dense phase CO2 pipelines' International Journal of Greenhouse Gas Control.

  • Categories  

    The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • Categories  

    Compilation of CO2 release field experiments conducted worldwide for which the research results are publicly available prior to May 2017. This includes 14 field sites and 41 field experiments. For each field site, where possible, there is data on: The project: including primary aims, partners, total funding, duration, current status, website. Site information: including geology (target formation and overburden), hydrology, environment. Field experiment set-up: including injection depth, well orientation. Summary activity: total number of experiments at the site, total CO2 released. For each experiment at each site, where possible, there is data on: Injection parameters, including injection strategy, rate, duration, start and end date, CO2 source and properties, use of tracers; Site parameters, such as groundwater depth at time of experiment; Leakage to surface, including whether CO2 leakage to surface occurred, quantitation; Characteristics of surface leakage, including location, distribution, time taken to reach surface, evolution as experiment progresses; Subsurface CO2 spread, in soil gas and groundwater interaction, environmental impact; Monitoring including area monitored, duration of monitoring before, during, and after the release. Data sources are clearly cited.

  • Categories  

    This is a blog (Workshop1, 30.04.14) on the UKCCSRC Call 1 project, Flexible CCS Network Development. Grant number: UKCCSRC-C1-40.

  • Categories  

    This Microsoft Excel document contains 5 worksheets providing data produced by research as part of UKCCSRC Call 1 funded project (grant number UKCCSRC-C1-31) and UKCCSRC funded international exchange. These data are presented and discussed in the manuscript "Geochemical tracers for monitoring offshore CO2 stores" by J. Roberts, S. Gilfillan, L. Stalker, M. Naylor, https://doi.org/10.1016/j.ijggc.2017.07.021. Then data details the assumptions around background concentrations of chemical tracers in the atmosphere and seawater, cost per litre, and how tracer detection concentrations (and so cost and potential environmental impact were calculated).