From 1 - 10 / 77
  • Categories  

    Technical report (2009) commissioned by Christian Aid and written by researchers from the University of Edinburgh and the University of Surrey. It aims to explore the prospects for carbon capture and storage (CCS) to play a significant role within global action to mitigate the risk of climate change, with a focus on India. Available for download at http://hdl.handle.net/1842/15679.

  • Categories  

    This dataset relates to the scientific journal article "A pilot-scale study of dynamic response scenarios for the flexible operation of post-combustion CO2 capture" (Tait et al. 2016), a study which was funded as part of the call 2 project "Towards more flexible generation with CCS". Pilot plant data from five dynamic scenarios for post-combustion capture on a state-of the-art NGCC plant (circa 2015) are included. The output from a novel solvent sensor, which can provide continuous online measurement of solvent CO2 loading is also included for several scenarios. The article can be found at: http://dx.doi.org/10.1016/j.ijggc.2015.12.009. More information on the project is available at https://ukccsrc.ac.uk/resources/ccs-projects-directory/towards-more-flexible-power-generation-ccs-pilot-plant-test

  • Categories  

    This Microsoft Excel document contains 8 worksheets providing data produced by research as part of EPSRC Grant #EP/K036033/1. These data are presented and discussed in the manuscript "The Inherent Tracer Fingerprint of Captured CO2." by Flude, S. Györe, D., Stuart, F.M., Zurakowska, M., Boyce, A.J., Haszeldine, S., Chalaturnyk, R., and Gilfillan, S. M. V. (Currently under review at IJGGC). Data include samples collected, gas concentrations, stable isotope data and noble gas data. This data relates to publication https://doi.org/10.1016/j.ijggc.2017.08.010.

  • Categories  

    A selection of abstracts and posters presented at international conferences as part of EPSRC Grant #EP/K036033/1.

  • Categories  

    Contains 6 SCCS technical briefings, technical letters and technical journal responses - Working Paper 2010-04: Popular response to Economides, CO2 storage is feasible; Working Paper 2010-05: Formal response to Economides, CO2 storage is feasible; Working Paper 2010-07: Comment on Little and Jackson: Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers; Working Paper 2012-01: Comment by Stuart Haszeldine on Zoback and Gorelick; Working Paper 2014-01: Sleipner CO2 securely stored deep beneath seabed, in spite of unexpected Hugin fracture discovery; Working Paper 2015-02: Carbon Dioxide Transport Plans for Carbon Capture and Storage in the North Sea Region - A summary of existing studies and proposals applicable to the development of Projects of Common Interest.

  • Categories  

    Carbon capture and storage (CCS) has emerged as a promising means of lowering CO2 emissions from fossil fuel combustion. However, concerns about the possibility of harmful CO2 leakage are contributing to slow widespread adoption of the technology. Research to date has failed to identify a cheap and effective means of unambiguously identifying leakage of CO2 injected, or a viable means of identifying ownership of it. This means that in the event of a leak from a storage site that multiple operators have injected into, it is impossible to determine whose CO2 is leaking. The on-going debate regarding leakage and how to detect it has been frequently documented in the popular press and scientific publications. This has contributed to public confusion and fear, particularly close to proposed storage sites, causing the cancellation of several large storage projects such as that at Barendrecht in the Netherlands. One means to reduce public fears over CCS is to demonstrate a simple method which is able to reliably detect the leakage of CO2 from a storage site and determine the ownership of that CO2. Measurements of noble gases (helium, neon, argon, krypton and xenon) and the ratios of light and heavy stable isotopes of carbon and oxygen in natural CO2 fields have shown how CO2 is naturally stored over millions of years. Noble gases have also proved to be effective at identifying the natural leakage of CO2 above a CO2 reservoir in Arizona and an oil field in Wyoming and in ruling out the alleged leakage of CO2 from the Weyburn storage site in Canada. Recent research has shown amounts of krypton are enhanced relative to those of argon and helium in CO2 captured from a nitrate fertiliser plant in Brazil. This enrichment is due to the greater solubility of the heavier noble gases, so they are more readily dissolved into the solvent used for capture. This fingerprint has been shown to act as an effective means of tracking CO2 injected into Brazilian and USA oil fields to increase oil production. Similar enrichments in heavy noble gases, along with high helium concentrations are well documented in coals, coal-bed methane and in organic rich oil and gas source rocks. As noble gases are unreactive, these enrichments will not be affected by burning the gas or coal in a power station and hence will be passed onto the flue gases. Samples of CO2 obtained from an oxyfuel pilot CO2 capture plant at Lacq in France which contain helium and krypton enrichments well above atmospheric values confirm this. Despite identification of these distinctive fingerprints, no study has yet investigated if there is a correlation between them and different CO2 capture technologies or the fossil fuel being burnt. We propose to measure the carbon and oxygen stable isotope and noble gas fingerprint in captured CO2 from post, pre and oxyfuel pilot capture plants. We will find out if unique fingerprints arise from the capture technology used or fuel being burnt. We will determine if these fingerprints are distinctive enough to track the CO2 once it is injected underground without the need of adding expense artificial tracers. We will investigate if they are sufficient to distinguish ownership of multiple CO2 streams injected into the same storage site and if they can provide an early warning of unplanned CO2 movement out of the storage site. Grant number: EP/K036033/1.

  • Categories  

    The adoption of carbon capture and storage (CCS) as a method of mitigating anthropogenic CO2 emissions will depend on the ability of initial geological storage projects to demonstrate secure containment of injected CO2. Potential leakage pathways, such as faults or degraded wells, increase the uncertainty of geological storage security. CCS as an industry is still in its infancy and until we have experience of industrial scale, long term CO2 storage projects, quantifying leakage event probabilities will be problematic. Laboratory measurements of residual saturation trapping, the immobilisation of isolated micro-bubbles of CO2 in reservoir pores, provides an evidence base to determine the fraction of injected CO2 that will remain trapped in the reservoir, even if a leakage event were to occur. Experimental results for sandstone, the most common target lithology for storage projects, demonstrate that 13–92% of injected CO2 can be residually trapped. Mineralisation, the only other geological trapping mechanism which guarantees permanent trapping of CO2, immobilises CO2 over hundreds to thousands of years. In comparison, residual trapping occurs over years to decades, a timescale which is more relevant to CCS projects during their operational phase and to any financial security mechanisms they require to secure storage permits. This is a publication in International Journal of Greenhouse Gas Control, Neil M. Burnside et. al. doi:10.1016/j.ijggc.2014.01.013.

  • Categories  

    SCCS presentations, consultations, responses, briefings and communications on CCS and CO2 storage for the period 2015 - 2016

  • Categories  

    This poster on the UKCCSRC Call 2 project Flexible CCS operations combined with online solvent monitoring: A pilot-scale study was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-214. This project focuses on enhancing the flexibility of amine based post-combustion capture systems 1. To evaluate the flexible operation capabilities of current post-combustion CCS plant designs via dynamic scenario testing at pilot scale. 2. To identify hardware bottlenecks to dynamic operation and suggest improvements. 3. To develop new instrumentation, operating strategies and control systems which will enhance operational flexibility. 4. To obtain real plant data to complement dynamic modelling efforts.

  • Categories  

    This presentation on the EPSRC project, Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership, was presented at the Cranfield Biannual, 21.04.15. Grant number: EP/K036033/1.