From 1 - 10 / 67
  • Categories  

    This UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project involved the development, testing and validation of a two-fluid transient flow model for simulating outflow following the failure of high pressure CO2 pipelines is presented. The project made use of experimental data and used experimental data available from other UK/EC funded projects. The model developed accounts for thermal and mechanical non-equilibrium effects during depressurisation by utilising simple constitutive relations describing inter-phase mass, heat and momentum transfer in terms of relaxation to equilibrium. Pipe wall/fluid heat exchange on the other hand is modelled by coupling the fluid model with a finite difference transient heat conduction model. This paper describes the model, the details of its numerical solution and its validation as well as parametric analysis of relevant parameters. http://www.sciencedirect.com/science/article/pii/S1750583614002394, DOI: 10.1016/j.ijggc.2014.08.013. UKCCSRC grant UKCCSRC-C1-07.

  • Categories  

    Synchrotron X-radiography (images) and diffraction data collected to measure anelasticity of zinc. NERC grant NE/H016309/1 - Experimental determination of mantle rheology. NERC grant NE/L006898/1 - The strength of the lower mantle.

  • Categories  

    The partitioning coefficients of water between iron and silicate melts at 20, 50, 90 and 135 gigapascals (corresponding to 2800, 3500, 3900 and 4200 kelvin) were calculated by using ab initio molecular dynamics and thermodynamic integration techniques. The Gibbs free energy of a series of iron and silicate melts with different concentrations of H2/H2O were calculated. Then the chemical potentials of H2/H2O were derived from the concentration dependent Gibbs free energies at each pressure temperature. The partitioning coefficients can be calculated by equating the chemical potential of H2/H2O in iron and silicate melts. The Weeks-Chandler-Andersen (WCA) system with established thermodynamics was used as the reference.

  • Categories  

    Synchrotron X-radiography (images) and diffraction data collected to measure rheology of Quartz coesite and stishovite.

  • Categories  

    The dataset contains 15 plots and data for time-dependent pressures and temperatures at various locations along a 2582-m-long well and at various simulation times. The realistic scenarios taken into considerations are applied to the Goldeneye depleted reservoir in the North Sea. Pure CO2 is injected into the well and then discharged in the Goldeneye reservoir. Six different scenarios are considered: three different injection durations (linear ramp-up of the inlet mass flow rate from 0 to 33.5 kg/s over 5 minutes, 30 minutes, and 2 hours) and two different upstream temperatures (278.15 K and 283.15 K). Data is currently restricted until publication.

  • Categories  

    This poster on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-07.

  • Categories  

    This poster on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-07.

  • Categories  

    Data used for the peer-reviewed manuscript entitled 'Variation of hydraulic properties due to dynamic fracture damage: Implications for fault zones' by Aben, FM, Doan, M-L, and Mitchell, TM. Manuscript currently in revision for Journal of Geophysical Research. Data consists of: Text files with the mechanical data timeseries (confining pressure, and pore volume and pore fluid pressure for two pore fluid pressure intensifiers) obtained during permeability measurements of deformed rock samples. File name contains sample number. Additional two mechanical data files (calib15 and calib18) are calibration files for the pore volume measurements. Manually traced X-ray CT images obtained on six samples.

  • Categories  

    This dataset contains VASP runs performed on ARCHER to calculate the electrical and thermal conductivities of pure iron and iron alloys at Earth's core conditions using density functional theory with the Kubo-Greenwood formulation. Data are available for both the solid and the liquid phase characterising the inner and outer core respectively. Also included in the dataset the runs for computing the lattice contribution to the electrical resistivity of magnetic bcc iron at ambient pressure and two low temperatures and for computing the melting curve of fcc nickel. These data were also used for the modelling of the geodynamo and the thermal history of the Earth, to calculate the transport properties for silicon-oxygen-iron mixtures and to confirm the saturation of electrical resistivity of solid iron at Earth’s core conditions. The results from this dataset showed that both conductivities are much larger than previously thought with important implications for the geodynamo and the thermal history of the Earth, benefitting the geodynamo community. The results of our research have been recently confirmed by new experimental results obtained at Earth's core conditions. Further details can be found in Alfè et al. (2012); Pozzo et al. (2012, 2013a, 2013b, 2014, 2016); Gubbins et al. (2015); Davies et al. (2015). NERC Grant is NE/H02462X/1.

  • Categories  

    Monthly anomalies (August 2002 to July 2016) of total terrestrial water storage (TWS), soil moisture storage (SMS), surface water storage (SWS), snow water storage (SNS), groundwater storage (GWS) derived from an ensemble mean of 3 gridded GRACE products (CSR, JPL-Mascons and GRGS) and an ensemble mean 4 land surface models (CLM, NOAH, VIC and MOSAIC), provided by the NASA’s Global Land Data Assimilation System (GLDAS). Monthly precipitation (CRU) data, derived from the Climatic Research Unit (CRU), were aggregated over each aquifer system. GRACE, GLDAS and CRU datasets are publicly available at the global scale. (NERC grant NE/M008932/1)