From 1 - 10 / 10
  • Categories  

    International Ocean Discovery Program Expedition 363, planktonic foraminifera range chart data Planktonic foraminifera range charts indicating: Column A: Sample ID Columns B and C: sample interval Columns D and E: top and bottom sample depth Column F: Zone (Wade et al., 2011) [W11] Column G: Zone name

  • Categories  

    Two datasets containing multiple diversity metrics of planktonic foraminifera. Recent data is from MARGO (Multiproxy approach for the reconstruction of the glacial ocean surface); Eocene data is from NEPTUNE (a relational database of microfossil occurrence records from DSDP and ODP publications), supplemented by literature searches. These data are related to Fenton et al (2016) Phil Trans (DOI: 10.1098/rstb.2015.0224) Data used in Fenton et al (2016) Environmental predictors of diversity in Recent planktonic foraminifera as recorded in marine sediments. The original data is from the MARGO database (Kucera, 2007)

  • Categories  

    These data are described fully in the following publication: S. Barker, J. Chen, X. Gong, L. Jonkers, G. Knorr, D. Thornalley, Icebergs not the trigger for North Atlantic cold events. Nature 520, 333-336 (2015). The dataset comprises planktonic foraminiferal census counts and counts of Ice Rafted Debris (IRD) from sediment samples collected during Ocean Drilling Programme (OPD) leg 162 site 983 in the Northeast Atlantic (60.48°N, 23.68°W, 1,984m water depth). The data were collected between Jan 2011 and Dec 2014. The dataset includes values every 2cm from 2 to 51.5m (metres composite depth) along the ship-board splice. Before counts were performed bulk sediments were spun overnight in distilled water, before sieving over a 63µm sieve. All portions were dried, weighed and stored. Counts were performed on a split of the >150µm fraction. The dataset can be employed to assess changes in surface temperature and presence of rafted ice over the site over the past 440kyr or so. This information is of interest to paleoceanographers and paleoclimatologists. The dataset was created and interpreted by a team at Cardiff University, with additional input from other authors named in the publication. The dataset is complete except for one or two samples that were not received from the repository.

  • Categories  

    The dataset worksheet contains a list of core samples taken during IODP Exp 350 and foraminifera-based data for selected samples. The work was started with the aim of reconstructing palaeoproductivity changes (namely surface-to-deep carbon isotope gradients and U/Ca measurements) over tephra layers in order to test the ‘ash fertilisation hypothesis’. However, the work has been temporarily halted given the on-board volcanologists ongoing concerns that the ash layers in the selected cores have been reworked and therefore are not primary. Because of the induration and silicification of the core samples at quite shallow depths in the core, the other aim of the project (to reconstruct palaeoceanographic changes from 16-0 Ma) was not possible. The spreadsheet contains a full list of samples and a list of samples that have been examined and analysed. The data worksheet contains the no. of Globigerinoides ruber (with weight), Oridorsalis umbonatus, Uvigerina spp. and Cibicidoides spp. specimens for specific samples. For selected samples, stable oxygen and carbon isotopes are given and a graph of the carbon isotopes vs depth in core is presented.

  • Categories  

    Data from Tanzania Drilling Project Core Site 14 B. Data spans the Paleocene Eocene Thermal Maximum ~56 million years ago. Data includes: bulk sediment geochemistry, BIT index and GDGT data, n-alkane d13C data, single specimen planktonic foraminifera stable isotope data and planktonic foraminifera count data. Geographic location 9°16'59.89"S, 39°30'45.04"E

  • Categories  

    The data comprises a multi-proxy dataset of 49 samples spanning approximately the time interval from 1.8-3.9 Ma according to the currently available shipboard age model from offshore the Limpopo River, southwest Indian Ocean. Data includes major and trace element chemistry and K-Ar ages from the clay fraction (<2um), radiogenic isotope geochemistry, stable isotopes of planktonic foraminifera Globigerinoides ruber. The data set is now online with a citable DOI, although with an embargo till September 2019, http://dx.doi.org/10.1594/IEDA/100719

  • Categories  

    Excel file containing abundance data of planktonic foraminifer from IODP Expedition 375 Hole 1520C (41R-44R)

  • Categories  

    Seawater carbonate system properties and atmospheric carbon dioxide concentration reconstructions from Eocene planktonic foraminifera using boron isotope analyses.

  • Categories  

    We used existing coretop samples from several sites from the Atlantic, Arctic, Pacific, and Indian Oceans (Fig. 1 and Table S1) to test the relationship between Mg/Ca ratios and D47 values in modern foraminifera. In the North Atlantic the cores were the same as those used previously by Elderfield and Ganssen (2000) (Tables S1 and S2). Coretops with the potential to yield large (>5 mg) mono-specific samples of foraminifera were selected from the >300 lm size fraction of the sediment except for Neogloboquadrina pachyderma (sinistral) where the >150 lm size fraction was chosen to obtain sufficient material. After cleaning the samples consisted of _3 mg of foraminiferal calcite and included 8 different species of surface- and deepdwelling planktonic foraminifera: Globigerina bulloides, Globigerinoides sacculifer, Globorotalia hirsuta, Globorotalia inflata, Globorotalia menardii, Neogloboquadrina dutertrei, Neogloboquadrina pachyderma (s), and Orbulina universa. The Godwin Laboratory clumped isotope calibration (i.e., the regression between D47 and temperature) was established using natural cave carbonates that precipitated subaqueously at known temperatures, ranging from 3 to 47ºC (Table 1, Fig. 2). These carbonates grew under conditions that minimize CO2-degassing and evaporation and hence kinetic fractionation effects are negligible owing to an unlimited DIC pool in the water (Kele et al., 2015). All samples consist of calcite, except NAICA-1 which is aragonite.

  • Categories  

    Elemental and stable isotope data measured in Eocene foraminiferal calcite from Ocean Drilling Program Site 865 and Tanzanian Drilling Project Site 18 published in Edgar et al. (2015) "Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite" in Geochimica et Cosmochimica Acta, v. 166, p. 189-209. Table 1. δ18O and δ13C values for glassy and frosty foraminifera from TDP Site 18 and ODP Site 865, respectively. Table 2. Sr/Ca and B/Ca values, and test weights for glassy and frosty foraminifera from TDP Site 18 and ODP Site 865, respectively. Table 3. δ11B values for glassy and frosty foraminifera from TDP Site 18 and ODP Site 865, respectively.