Mathematical models
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies

The dataset consists of a series of input and output files for the 1D and 3D numerical models used to demonstrate the impact of heat mining for a 100m long vertical Borehole Heat Exchanger (BHE) in Scotland, assuming a constant or fluctuating surface heat flux. Simulations for a constant heat extraction from the BHE were performed using an updated version of the opensource OpenGeoSys finiteelement modelling software (https://www.opengeosys.org/) made available in this repository. This updated version allows for calculation of the energy change in each material group in the models, as part of the HEAT_TRANSPORT process. For each model, the input files include the mesh file (MSH), the Boundary conditions (BC), geometry (GLI), Initial conditions (IC), Fluid properties (MFP), Medium properties (MMP), Material solid properties (MSP), Numerical parameters (NUM), Ouput parameters (OUT), Process (PCS), Reference (RFD), Sourceterm (ST) and Time (TIM) files. The output files consists of temperature timeseries, 1D and 2D temperature profiles extracted from the models domain at different time steps (i.e. Tecplot output files) and of a text file indicating the energy content of each material group at each time step.

This UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project involved the development, testing and validation of a twofluid transient flow model for simulating outflow following the failure of high pressure CO2 pipelines is presented. The project made use of experimental data and used experimental data available from other UK/EC funded projects. The model developed accounts for thermal and mechanical nonequilibrium effects during depressurisation by utilising simple constitutive relations describing interphase mass, heat and momentum transfer in terms of relaxation to equilibrium. Pipe wall/fluid heat exchange on the other hand is modelled by coupling the fluid model with a finite difference transient heat conduction model. This paper describes the model, the details of its numerical solution and its validation as well as parametric analysis of relevant parameters. http://www.sciencedirect.com/science/article/pii/S1750583614002394, DOI: 10.1016/j.ijggc.2014.08.013. UKCCSRC grant UKCCSRCC107.

Numerical model predictions of presentday solid Earth deformation and gravity field change due to ongoing glacial isostatic adjustment processes. Model accounts for 3D spatial variations in Earth rheology using a finite element approach.

The data contain the results of model of a conductively cooling planetesimal with a radius of 250 km and a core radius of 125 km. Two data files are included: one for a model run which uses constant values for thermal properties (conductivity, heat capacity, and density) while the second uses temperaturedependent functions for these properties. Further details of the model in Murphy Quinlan et al., (in prep). Four arrays are included in each of the compressed data files: mantle temperature array; core temperature array; mantle coolingrate array; core coolingrate array. All arrays are the same size (125 by 126229) and hold data for radii values through time, with a radiusstep of 1 km and timestep of 1E11 seconds over a total time period of 400 Myr.

Initiation files for 2D numerical models for Fluidity code. The models simulate subduction of an oceanic plate under various conditions described in Suchoy et al., 2020. The models use temperature, pressure and strainrate dependent composite rheology, which generates different regions without prescribing material fields. The models are similar in nature to other geodynamic models (e.g. Billen and Arredondo, 2018) and can be used for further investigation of subduction dynamics, and to reproduce the results presented in Suchoy et al., 2020. For further enquiries regarding these models please contact Lior Suchoy (Imperial College London), Saskia Goes (Imperial College London) or Rhodri Davies (Australia National University).

The permeability of single fractures, pairs of conjugate fracture pairs, and 256 fracture networks, is numerically computed using a multiscale permeability method. For fracture networks, the geometries of the files are contained in 3dm files. The results are presented in a series of json text files. The method to compute permeabilities is described in the PhD thesis entitled "Multiscale modelling of thermohydromechanicalchemical processes in fractured rocks" by Philipp Lang, Imperial College London, supervised by Adriana Paluszny and Robert W. Zimmerman.

Coordinated by Haroun Mahgerefteh at UCL, the EC funded FP7 CO2QUEST project addressed the main challenges associated with determining the optimal composition and purity of CO2 product streams derived from carbon capture systems for enabling its safe and economic transport and storage. The project brought together academics and major stakeholders to perform computational studies backedup by largescale experiments aimed at identifying CO2 mixtures that have the most profound impact on the different parts of the CCS chain. The project ran from March 2013 until June 2016, involving 9 partners across Europe, including from Canada and China. It resulted in over 100 peer reviewed journal publications and conference proceedings, three international conferences and several newsletters, receiving the IChemE Highly Commended Global Process Safety Award in 2016. More information about CO2QUEST including its objectives, deliverables and list of publications may be found at: http://www.co2quest.eu/

Numerical model predictions of presentday horizontal deformation due to ongoing glacial isostatic adjustment processes at GPS sites across Antarctica. Model accounts for 3D spatial variations in Earth rheology using a finite element approach.