From 1 - 10 / 24
  • Categories  

    This dataset comprises ECLIPSE input decks for a 3D reservoir simulation of the CO2 plume at the Sleipner CO2 injection site. This whole reservoir model is an attempt to history match the growth of the plume observed on seismic data. A seismic velocity and density model derived from the 3D reservoir simulation is also included, together with a series of Seismic Unix scripts to create a synthetic seismic section through the Sleipner reservoir model, for comparison with released time-lapse seismic data.

  • Categories  

    UKCCSRC Flexible Funding 2020. The experimental data was collected on a 1-inch bore gas-liquid two-phase CO2 flow rig in real time. The first column of the table is the time stamp. The second to 19th columns are the mass flowrates, temperatures, densities and tube frequencies from Coriolis flowmeters installed on the gas phase section, liquid phase section, horizontal test section and vertical test section, respectively. The last column of the datafile is the reading from the differential pressure (DP) transducer installed across the Coriolis flowmeter on the horizontal test section. UKCCSRC Flexible Funding 2020: Monitoring of CO2 flow under CCS conditions through multi-modal sensing and machine learning.

  • Categories  

    The supporting data for C. Harris et al., 2021, 'The impact of heterogeneity on the capillary trapping of CO2 in the Captain Sandstone', International Journal of Greenhouse Gas Control. We supply experimental and numerical simulation data used in the paper. The supplied codes reproduce each figure. The codes are split into 2 folders, descriptions of each of the folders are given below: 0 - README. This contains detailed instructions on using the supplied files. 1 - Main simulations. This contains the code to produce the main CMG (Computer Modelling Group) simulations outlined in the paper, with various input variable files. 2 - Other figures. This contains the code to produce other figures within the paper which do not rely on numerical simulations, including the experimental data.

  • Categories  

    UKCCSRC Flexible Funding 2020. Experimental data are the acoustic emission (AE) signals collected with three AE sensors when CO2 leak from a CO2 storage cylinder under different pressures. '5MPa_20kgh-1' means the data was collected when the pressure was 5MPa and the leakage rate was 20 kg/h. The sampling frequency of AE signals is 3MHz. UKCCSRC Flexible Funding 2020: Monitoring of CO2 flow under CCS conditions through multi-modal sensing and machine learning.

  • Categories  

    This study was carried out jointly by the University of Birmingham and the British Geological Survey. The report addresses the feasibility of using novel quantum-technology-based gravity sensors to monitor underground CO2 storage. Of particular interest is the applicability to upcoming near-surface leak monitoring trials that the British Geological Survey will be conducting at its test site. UKCCSRC Flexible Funding 2021: Feasibility study into Quantum Technology based Gravity Sensing for CCS

  • Categories  

    The data set encompasses the data generated through the 8 experimental runs on the 25 kWth calcium looping pilot plant at Cranfield University arranged into 8 functional Excel spreadsheets. The operational data are gathered by the acquisition with Labview software (the composition of the gas from the calciner and carbonator; temperatures of the electrical furnaces on the preheating lines and around the calciner; temperatures of the gas in the preheating lines and in the calciner) and Pico software (temperatures in the carbonator and lower loop seal and pressures in the calciner and in the carbonator). Moreover, the data from the experimental diary (inputs of gasses and solids into the rig) and the data from the post-processing of the extracted solids are included. All the data are combined into comprehensible charts that describe and explain the experimental runs together with the mass and energetic model of the system during steady state operations.

  • Categories  

    Temperature reconstructions indicate that the Pliocene was ~3 degrees C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. These data represent new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 0 to 0.2 and 2.6 to 3.3 million years ago from ODP Site 999 (supplementing our other data repository focused on 2.8 to 3.3 million years ago). Our record allows a) direct comparison of alkenone-derived pCO2 from the Pleistocene to that of the Pliocene and b) comparison of the former to the ice core record. The raw data are sea surface temperature estimates from the Uk'37 proxy, foraminiferal and alkenone d13C values, from which carbon isotope fractionation during photosynthesis (ep) can be calculated. Using nutrient concentrations (growth rate correction) and SSTs, these ep values can be converted into [CO2(aq)] which in turn can be used to calculate pCO2.

  • Categories  

    A dataset is presented for defining real-time CO2 frost formation in a vertical packed column. ECT could estimate the internal permittivity distribution of the sensing area through boundary measurements. The ECT system used in this work includes sensors, data acquisition system and a computer with imaging software. The excitation signal is a sine wave with 14 Vp-p and 200k Hz frequency. One measurement electrode is chosen for excitation; other electrodes are used to acquire the signal separately. The frame rate of the ECT system is 714 frames per second. The temperature of the bed material is recorded using thermocouples and data loggers, the thermocouples are inserted into the capture column from the top of the column and are adjusted to an appropriate height above the horizontal mixed gas injector. Using the thermocouples above and below the ECT sensor helped to estimate when frost formation would be occurring within the region of bed material that the ECT sensor was measuring. The presence of this plateau in the temperature profiles identifies that CO2 frost is forming within the bed and has reached an equilibrium. We include data of ECT capacitance and temperature during the whole progress. It was found that the temperature, packing material and component of mixer gas all effect the ECT measurement. This dataset could be used to withstand extreme low temperature conditions or in desublimation processes, and its potential application to decarbonise the marine transport is significant to avoid costs if using new infrastructure for ammonia or hydrogen manufacture. Our results indicate that ECT has potential to be a novel technique for monitoring dynamic CO2 frost formation during cryogenic carbon capture. The associated report is included in the data too. Accompanying paper: Preliminary study of CO2 frost formation during cryogenic carbon capture using tomography analysis - ScienceDirect, https://doi.org/10.1016/j.fuel.2022.125271.

  • Categories  

    During the drilling of an exploration well in the 1960s, an underground blowout occurred near Sleen, The Netherlands. During approximately 25 months, near-continuous leakage of large amounts of natural gas was released into the subsurface. After the blowout, the local drinking water production company installed a network of groundwater monitoring wells to monitor for possible adverse effects on groundwater quality at the blowout site. Today, more than 50 years after the blowout, the groundwater is still impaired. Data has been correlated with previously published data by Schout et al. (2018) covering description of geology and well depths. During two fieldtrips (November 2019 & October 2020) water samples were collected from several wells covering: - Bulk gas compositions (methane, ethane, propane, oxygen, nitrogen, CO2, Argon). Bulk isotope compositions of methane (δ13C & δH), carbon dioxide (δ13C) and nitrogen (δ15N). - Methane clumped isotope compositions (ΔCD & ΔDD). - Inorganic parameters (hydrocarbons, anions, cations, DOC, alkalinity, nitrate and ammonium). The dataset was created within SECURe project (Subsurface Evaluation of CCS and Unconventional Risks) - https://www.securegeoenergy.eu/. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 764531.

  • Categories  

    These data were collected to study oxidative weathering processes in the Waiapu River catchment, New Zealand, with potential carbon release sourced from the oxidation of petrogenic organic carbon or carbonate dissolution coupled to the oxidation of sulfide minerals. There, in mudstones exposed in a highly erosive gully complex, in situ CO2 emissions were measured with drilled gas accumulation chambers following the design by Soulet et al. (2018, Biogeosciences 15, 4087-4102, https://doi.org/10.5194/bg-15-4087-2018). Temporal and spatial variability in CO2 flux can be put in context with environmental changes (e.g., temperature and hydrology). For this, CO2 release from 5 different chambers, which were installed over a transect of ~ 10 m length in a gully above a nearby streambed, was measured several times over a short study period (circa one week). In addition, the gaseous CO2 storage (partial pressure) in the shallow weathering zone was measured prior to a CO2 flux measurement. To understand the source of CO2, gas samples were collected and their stable and radioactive carbon isotope compositions determined. In this process, we identified a contaminant, which was associated with the chamber installation, that can be traced in the gas samples that were collected within 4 days following the installation. Details of the subsequent data analysis and interpretation can be found in: Roylands et al. 2022, Chemical Geology: Capturing the short-term variability of carbon dioxide emissions from sedimentary rock weathering in a remote mountainous catchment, New Zealand. This work was supported by the European Research Council (Starting Grant to Robert G. Hilton, ROC-CO2 project, grant 678779).