Keyword

Carbon capture and storage

305 record(s)

 

Type of resources

Topics

Keywords

Contact for the resource

Provided by

Years

Formats

Update frequencies

Scale

From 1 - 10 / 305
  • Categories  

    This project contributes significantly to the de-risking of a technology which has a significantly lower efficiency penalty than post-combustion capture using Monoethanolamine (MEA) scrubbing. The work here specifically targets two industrial sectors where MEA scrubbing is at a significant disadvantage (only ~ 30 % of the low-grade heat required for MEA scrubbing is present in a cement plant, for example [1]), and in both cases the spent CaO is valuable as an input to the process itself (either as the main feedstock for cement clinker production, or as a flux in iron production). The project builds on several current projects at both Imperial College and Cranfield University and offers excellent value for money because of these synergies. Grant number: UKCCSRC-C2-209.

  • Categories  

    This presentation on the EPSRC project, CONTAIN, was presented at the Cranfield Biannual, 21.04.15. Grant number: EP/K036025/1.

  • Categories  

    This poster on the UKCCSRC Call 2 project Process-Performance Indexed Design of Ionic Liquids for Carbon Capture was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-199. The elevated cost of carbon capture and storage (CCS) is currently hindering its implementation at large scale. We aim to design a 'perfect' solvent for the capture of carbon dioxide (CO2). The design of the solvent is based on process performance indexes.

  • Categories  

    Atmospheric Burner Tests With Oxygen, Nitrogen And Carbon Dioxide. Excel File. Testing undertaken May / June 2014. Data used is detailed in report: Oxyfuel And Exhaust Gas Recirculation Processes In Gas Turbine Combustion For Improved Carbon Capture Performance. August 2014. Grant number: UKCCSRC-C1-26.

  • Categories  

    This presentation on the UKCCSRC Call 1 project, UK Bio-CCS CAP, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-38.

  • Categories  

    The data consists of a spreadsheet containing gas column height, CO2 content and estimated retained buoyancy pressures for Southern North Sea gas fields, based on published information. The data were obtained from published field records and papers on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14.

  • Categories  

    This presentation on the UKCCSRC Call 2 project Performance of Flow Meters with Dense Phase CO2 and CCS Recovery Streams was presented at the UKCCSRC Edinburgh Biannual Meeting, 15.09.2016. Grant number: UKCCSRC-C2-201.

  • Categories  

    It is crucial that the engineered seals of boreholes in the vicinity of a deep storage facility remain effective for considerable timescales if the long-term geological containment of stored CO2 is to be effective. These timescales extend beyond those achievable by laboratory experiments or industrial experience. Study of the carbonation of natural Ca silicate hydrate (CSH) phases provides a useful insight into the alteration processes and evolution of cement phases over long-timescales more comparable with those considered in performance assessments. Samples from two such natural analogues in Northern Ireland have been compared with samples from laboratory experiments on the carbonation of Portland cement. Samples showed similar carbonation reaction processes even though the natural and experimental samples underwent carbonation under very different conditions and timescales. These included conversion of the CSH phases to CaCO3 and SiO2, and the formation of a well-defined reaction front. In laboratory experiments the reaction front is associated with localised Ca migration, localised matrix porosity increase, and localised shrinkage of the cement matrix with concomitant cracking. Behind the reaction front is a zone of CaCO3 precipitation that partly seals porosity. A broader and more porous/permeable reaction zone was created in the laboratory experiments compared to the natural samples, and it is possible that short-term experiments might not fully replicate slower, longer-term processes. That the natural samples had only undergone limited carbonation, even though they had been exposed to atmospheric CO2 or dissolved View the MathML sourceHCO3- in groundwater for several thousands of years, may indicate that the limited amounts of carbonate mineral formation may have protected the CSH phases from further reaction. doi:10.1016/j.apgeochem.2012.09.007. http://www.sciencedirect.com/science/article/pii/S0883292712002594.

  • Categories  

    The solubility of water (H2O) in carbon dioxide (CO2) and nitrogen (N2) mixtures (xN2 = 0.050 and 0.100, mole fraction) has been investigated at 25 and 40 °C in the pressure range between 8 and 18 MPa. The motivation for this work is to aid the understanding of water solubility in complex CO2-based mixtures, which is required for the safety of anthropogenic CO2 transport via pipeline for carbon capture and storage (CCS) technology. The measurements have been performed using an FTIR spectroscopic approach and demonstrate that this method is a suitable technique to determine the concentration of water in both pure CO2 and CO2 + N2 mixtures. The presence of N2 lowers the mole concentration of water in CO2 by up to 42% for a given pressure in the studied conditions and this represents important data for the development of pipelines for CCS. This work also provides preliminary indications that the key parameters for the solubility of H2O in such CO2 + N2 mixtures are the temperature and the overall density of the fluid mixture and not solely the given pressure of the CCS mixture. This could have implications for understanding the parameters required to be monitored during the safer transportation of CO2 mixtures in CCS pipelines. The paper is available at http://www.sciencedirect.com/science/article/pii/S1750583615000444, DOI: 10.1016/j.ijggc.2015.02.002. UKCCSRC Grants UKCCSRC-C1-21 and UKCCSRC-C2-185.

  • Categories  

    Dupont, Valerie (2016) Data for "Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor" in International Journal of Hydrogen Energy. University of Leeds. Data file containing datasets used to generate the figures and tables in the paper. [Dataset] https://doi.org/10.5518/126. [Publication] http://doi.org/10.1016/j.ijhydene.2016.11.093