Keyword

Carbon capture and storage

318 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
From 1 - 10 / 318
  • Categories  

    UKCCSRC Grant EP/P026214/1. The UKCCSRC Spring Web Series ran from 30th March and running until 10th July 2020 relating to various aspects of carbon capture and storage. For more information see https://ukccsrc.ac.uk/web-series/ukccsrc-spring-web-series/.

  • Categories  

    This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.

  • Categories  

    Many of the research results from the SACS and CO2STORE projects are published in the scientific literature but in a somewhat fragmented form. This report consolidates some of the key findings into a manual of observations and recommendations relevant to underground saline aquifer storage, aiming to provide technically robust guidelines for effective and safe storage of CO2 in a range of geological settings. This will set the scene for companies, regulatory authorities, nongovernmental organisations, and ultimately, the interested general public, in evaluating possible new CO2 storage projects in Europe and elsewhere. The report can be downloaded from http://nora.nerc.ac.uk/2959/.

  • Categories  

    This poster on the UKCCSRC Call 2 project, Novel Materials and Reforming Processing Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-181.

  • Categories  

    The risks associated with the transport and injection of carbon dioxide are reasonably well understood and already borne in the USA. There is a remote possibility that CO2 disposed of underground could leak from a storage reservoir, either through an unidentified migration pathway or as the result of a well failure. The kind of threat that this might represent may be judged by comparison with naturally occurring volcanic CO2 emissions. Diffuse CO2 emissions through the soil or via carbonated springs in volcanic areas do not appear to represent a threat as long as the CO2 is able to disperse into the atmosphere. However, when CO2 is able to build up in enclosed spaces it poses a definite threat. Large CO2 clouds associated with sudden emissions from volcanic vents or craters also pose a lethal threat. However, there appears to be little analogy between such events and any possible leak from a storage reservoir via a natural unidentified migration pathway. Modelling of the development, migration and subsequent dispersal of any CO2 cloud which might arise from a well failure is recommended. doi:10.1016/S0196-8904(96)00276-2. http://www.sciencedirect.com/science/article/pii/S0196890496002762.

  • Categories  

    While chemical looping (combustion, CLC) is a promising technology for carbon capture, however many questions still remain as to its applicability at an industrial scale. In Chemical looping combustion a metal oxide is shuttled back and forth between a fuel and air reactor, picking up oxygen in the air reactor and transferring it to the fuel reactor. The fuel is never mixed with the nitrogen from the air, so a stream of CO2 and H2O is produced directly from the fuel reactor; this potentially makes the integrated power production and CO2 capture system highly efficient. Most CLC and CLOU schemes envisage using fluidised beds in which the solid fuel is intimately mixed with the oxygen carrier, or mixing of the solid fuel particles. This project aims to push forward chemical looping within the UK and integrates both experimental work and theoretical analysis to result in the first large-scale demonstration of CLC within the UK. Grant number: UKCCSRC-C1-39.

  • Categories  

    The data consists of a poster presented at 'The Fourth International Conference on Fault and Top Seals', Almeria, Spain, 20-24th September 2015. The poster describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. The CO2-rich St. Johns Dome reservoir in Arizona provides a useful analogue for leaking CO2 storage sites, and the abstract describes an analysis of the fault-seal behaviour at the site as well as at the UK Fizzy and Oak CO2-rich gas Fields

  • Categories  

    Carbon capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a realistic option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS), took place in Ardmucknish Bay, Oban, in May–September 2012. We applied the in situ pH/pCO2 sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The cabled real-time sensor was deployed close to the CO2 leakage (bubbling) area, and the fluctuations of in situ pH and pCO2 above the seafloor were monitored in a land-based container. The long-term sensor was placed on seafloor in three different observation zones. The sediment pH sensor was inserted into the sediment at a depth of 50 cm beneath the seafloor near the CO2 leakage area. Wide-area mapping surveys of pH and pCO2 in water column around the CO2 leakage area were carried out by using an autonomous underwater vehicle (AUV) installed with sensors. Atmospheric CO2 above the leakage area was observed by using a CO2 analyzer that was attached to the bow of ship of 50 cm above the sea-surface. The behavior of the leaked CO2 is highly dependent on the tidal periodicity (low tide or high tide) during the CO2 gas release period. At low tide, the pH in sediment and overlying seawater decreased due to strong eruption of CO2 gas bubbles, and the CO2 ascended to sea-surface quickly with a little dissolution to seawater and dispersed into the atmosphere. On the other hand, the CO2 bubbles release was lower at high tide due to higher water pressure, and slight low pH seawater and high atmospheric CO2 were detected. After stopping CO2 gas injection, no remarkable variations of pH in sediment and overlying water column were observed for three months. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Kiminori Shitashima et. al. Doi: 10.1016/j.ijggc.2014.12.011.

  • Categories  

    In January 1993, as part of the Joule II Non-nuclear Energy Research Programme, the European Commission initiated a two year study of the potential for the disposal of industrial quantifies of carbon dioxide underground, with a view to reducing emissions to the atmosphere. The participants in the study were the British Geological Survey (UK), TNO Institute of Applied Geoscience (The Netherlands), BRGM (France), CRE Group Ltd (UK), IKU Petroleum Research (Norway), RWE AG (Germany), University of Sunderland Renewable Energy Centre (UK) and Statoil (Norway). The objective of the study was to examine whether carbon dioxide emissions from large point sources such as power stations, could be disposed of safely, economically and with no adverse effects on man and the environment. doi:10.1016/0196-8904(95)00308-8. http://www.sciencedirect.com/science/article/pii/0196890495003088

  • Categories  

    The aim of this proposal is to develop and validate a multi-phase flow model for simulating the highly transient flow phenomena taking place in the well-bore during start-up injection of CO2 mixtures into depleted gas fields. The objectives are to: 1.demonstrate the usefulness of the model developed based on its application to a real system as a test case; 2.use the findings in (1) to propose optimum injection strategies and develop Best Practice Guidelines for minimising the risks associated with the start-up injection of CO2 into depleted gas reservoirs. Grant number: UKCCSRC-C2-183.