Keyword

Carbon capture and storage

325 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
From 1 - 10 / 325
  • Categories  

    During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a preliminary Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study has yielded invaluable knowledge on areas including project design, technical design, health and safety, environment, consents and project management. The E.ON UK FEED study material is available for download.

  • Categories  

    In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what exactly would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland (Goldeneye) through to construction. The study has yielded invaluable knowledge in areas such as cost, design, end-to-end CCS chain operation, health and safety, environment, consent and permitting, risk management, and lessons learnt. The ScottishPower CCS Consortium FEED study material are available for download.

  • Categories  

    This paper explores the social dimensions of an experimental release of carbon dioxide (CO2) carried out in Ardmucknish Bay, Argyll, United Kingdom. The experiment, which aimed to understand detectability and potential effects on the marine environment should there be any leakage from a CO2 storage site, provided a rare opportunity to study the social aspects of a carbon dioxide capture and storage-related event taking place in a lived-in environment. Qualitative research was carried out in the form of observation at public information events about the release, in-depth interviews with key project staff and local stakeholders/community members, and a review of online media coverage of the experiment. Focusing mainly on the observation and interview data, we discuss three key findings: the role of experience and analogues in learning about unfamiliar concepts like CO2 storage; the challenge of addressing questions of uncertainty in public engagement; and the issue of when to commence engagement and how to frame the discussion. We conclude that whilst there are clearly slippages between a small-scale experiment and full-scale CCS, the social research carried out for this project demonstrates that issues of public and stakeholder perception are as relevant for offshore CO2 storage as they are for onshore. Published in QICS Special Issue - International Journal of Greenhouse Gas Control, Leslie Mabon et. al. Doi:10.1016/j.ijggc.2014.10.022

  • Categories  

    Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2014.09.007.

  • Categories  

    The solubility of water (H2O) in carbon dioxide (CO2) and nitrogen (N2) mixtures (xN2 = 0.050 and 0.100, mole fraction) has been investigated at 25 and 40 degrees C in the pressure range between 8 and 18 MPa. The motivation for this work is to aid the understanding of water solubility in complex CO2-based mixtures, which is required for the safety of anthropogenic CO2 transport via pipeline for carbon capture and storage (CCS) technology. The measurements have been performed using an FTIR spectroscopic approach and demonstrate that this method is a suitable technique to determine the concentration of water in both pure CO2 and CO2 + N2 mixtures. The presence of N2 lowers the mole concentration of water in CO2 by up to 42% for a given pressure in the studied conditions and this represents important data for the development of pipelines for CCS. This work also provides preliminary indications that the key parameters for the solubility of H2O in such CO2 + N2 mixtures are the temperature and the overall density of the fluid mixture and not solely the given pressure of the CCS mixture. This could have implications for understanding the parameters required to be monitored during the safer transportation of CO2 mixtures in CCS pipelines. The paper is available at http://www.sciencedirect.com/science/article/pii/S1750583615000444, DOI: 10.1016/j.ijggc.2015.02.002. UKCCSRC Grants UKCCSRC-C1-21 and UKCCSRC-C2-185.

  • Categories  

    Carbon capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a realistic option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS), took place in Ardmucknish Bay, Oban, in May–September 2012. We applied the in situ pH/pCO2 sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The cabled real-time sensor was deployed close to the CO2 leakage (bubbling) area, and the fluctuations of in situ pH and pCO2 above the seafloor were monitored in a land-based container. The long-term sensor was placed on seafloor in three different observation zones. The sediment pH sensor was inserted into the sediment at a depth of 50 cm beneath the seafloor near the CO2 leakage area. Wide-area mapping surveys of pH and pCO2 in water column around the CO2 leakage area were carried out by using an autonomous underwater vehicle (AUV) installed with sensors. Atmospheric CO2 above the leakage area was observed by using a CO2 analyzer that was attached to the bow of ship of 50 cm above the sea-surface. The behavior of the leaked CO2 is highly dependent on the tidal periodicity (low tide or high tide) during the CO2 gas release period. At low tide, the pH in sediment and overlying seawater decreased due to strong eruption of CO2 gas bubbles, and the CO2 ascended to sea-surface quickly with a little dissolution to seawater and dispersed into the atmosphere. On the other hand, the CO2 bubbles release was lower at high tide due to higher water pressure, and slight low pH seawater and high atmospheric CO2 were detected. After stopping CO2 gas injection, no remarkable variations of pH in sediment and overlying water column were observed for three months. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Kiminori Shitashima et. al. Doi: 10.1016/j.ijggc.2014.12.011.

  • Categories  

    This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (~1250 µatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30-100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 µatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took <7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Dariia Atamanchuk et. al. Doi:10.1016/j.ijggc.2014.10.021.

  • Categories  

    The detection and quantification of an underwater gas release are becoming increasingly important for oceanographic and industrial applications. Whilst the detection of each individual bubble injection events, with commensurate sizing from the natural frequency of the acoustic emission, has been common for decades in laboratory applications, it is impractical to do this when hundreds of bubbles are released simultaneously, as can occur with large methane seeps, or leaks from gas pipelines or undersea facilities for carbon capture and storage. This paper draws on data from two experimental studies and demonstrates the usefulness of passive acoustics to monitor gas leaks of this level. It firstly shows experimental validation tests of a recent model aimed at inverting the acoustic emissions of gas releases in a water tank. Different gas flow rates for two different nozzle types are estimated using this acoustic inversion and compared to measurements from a mass flow meter. The estimates are found to predict accurately volumes of released gas. Secondly, this paper demonstrates the use of this method at sea in the framework of the QICS project (controlled release of CO2 gas). The results in the form of gas flow rate estimates from bubbles are presented. These track, with good agreement, the injected gas and correlate within an order of magnitude with diver measurements. Data also suggest correlation with tidal effects with a decrease of 15.1 kg d-1 gas flow for every 1 m increase in tidal height (equivalent to 5.9 L/min when converted to standard ambient temperature [25 °C] and absolute pressure [100 kPa] conditions, SATP). This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2015.02.008.

  • Categories  

    The CO2 controlled release experiment “Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage” (QICS) assessed the impacts of potential CO2 leakage from sub-seabed carbon capture and storage reservoirs to the marine environment. During QICS, CO2 gas was released into shallow sediment in Ardmucknish Bay, Scotland, in the spring and summer of 2012. As part of this project, we investigated the effects of CO2 leakage on sedimentary phosphorus (P), an essential nutrient for marine productivity. We found no statistically significant effects during QICS, as the solid-phase P content in the sediment was constant before, during, and after exposure to CO2. However, laboratory experiments using marine sediment standard materials as well as QICS sediment revealed substantial differences among these different sediment types in their potential for P release during CO2 exposure. Employing the SEDEX sequential extraction technique to determine the sizes of the major P pools in the sediments, we showed that calcium-bound P can be easily released by CO2 exposure, whereas iron-bound P is a major sink of released P. The overall impacts of CO2 leakage on sediment P behavior appear to be low compared to natural variability. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Ayumi Tsukasaki et. al. Doi:10.1016/j.ijggc.2014.12.023.

  • Categories  

    Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2014.09.007.