Keyword

Carbon capture and storage

307 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
Scale
From 1 - 10 / 307
  • Categories  

    EPSRC project EP/K035878/1 - The DiSECCS seismic analysis toolbox comprises a series of codes which implement various algorithms for analysing post-stack seismic data acquired as part of a geological carbon sequestration monitoring programme. The tools focus on determining the thickness, saturation distribution and physical properties of CO2 layers imaged on seismic data. The toolbox also contains a number of new rock physics models developed as part of the DiSECCS project in the form of Mathematica notebooks.

  • Categories  

    This poster on the UKCCSRC Call 2 project Flexible CCS operations combined with online solvent monitoring: A pilot-scale study was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-214. This project focuses on enhancing the flexibility of amine based post-combustion capture systems 1. To evaluate the flexible operation capabilities of current post-combustion CCS plant designs via dynamic scenario testing at pilot scale. 2. To identify hardware bottlenecks to dynamic operation and suggest improvements. 3. To develop new instrumentation, operating strategies and control systems which will enhance operational flexibility. 4. To obtain real plant data to complement dynamic modelling efforts.

  • Categories  

    Carbon Capture and Storage (CCS) technologies are critical for the UK to achieve its an ambitious target to reduce CO2 emissions by 80% by 2050. The development of an accurate, cost efficient and scalable metering technology that could be deployed in the commercial scale transportation of CO2 by pipeline for CCS purposes is critical for the deployment of CCS. However, current technologies employed in metering CO2 flows by pipeline are unable to provide the required levels of accuracy, particularly in situations where the CO2 stream contains different levels of impurities. Accordingly, in this project we will conduct laboratory trials to assess meters for accurate flow measurements, and ultimately develop technical specifications for accurate flow metering for CCS applications. Grant number: UKCCSRC-C2-201.

  • Categories  

    This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-40.

  • Categories  

    The data consists of a poster presented at the twelfth 'Greenhouse Gas Control Technologies' conference (GHGT-12), held in Austin, Texas, on the 6-9th October 2014. The psoter describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. The geomechanical and fault seal analysis of the naturally CO2-rich Fizzy Field in the UK Southern North Sea is investigated.

  • Categories  

    The dataset contains 15 plots and data for time-dependent pressures and temperatures at various locations along a 2582-m-long well and at various simulation times. The realistic scenarios taken into considerations are applied to the Goldeneye depleted reservoir in the North Sea. Pure CO2 is injected into the well and then discharged in the Goldeneye reservoir. Six different scenarios are considered: three different injection durations (linear ramp-up of the inlet mass flow rate from 0 to 33.5 kg/s over 5 minutes, 30 minutes, and 2 hours) and two different upstream temperatures (278.15 K and 283.15 K). Data is currently restricted until publication.

  • Categories  

    Whilst sub-seabed Carbon Capture and Storage (CCS) has the potential to remove a significant proportion of anthropogenic CO2 emissions at source, research is necessary to constrain the environmental impacts of potential future gas leaks from storage reservoirs. The QICS project (Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbons Storage) was established to improve our understanding of these potential impacts and to develop tools and best practice for monitoring sub-seabed CCS reservoirs. Exposure to increased environmental CO2 has been shown to raise the tissue pCO2 of many marine invertebrate species, leading to tissue acidosis and perturbations in both ion transport and bicarbonate buffering. These disturbances can cause downstream effects, seen as metabolic depression in susceptible organisms, compromising the role of particular species within an ecosystem and even causing the local extinction of species groups. To monitor the potential impact to surficial benthic megafauna, cages of bivalves (the common mussel Mytilus edulis Linnaeus, 1758 and the king scallop Pecten maximus (Linnaeus, 1758)) were deployed at the gas release site and at a reference site—both within Ardmucknish Bay, Oban, Scotland. Replicate individuals were sampled at six time points over a 125-day period, which spanned both the 37-day injection and recovery phases of the experiment, in order to establish impacts to molecular physiology. Samples of bivalves were also simultaneously sampled from a reference site within the bay in order to contrast changes in physiology induced by the gas release with naturally variability in the physiological performance of both species. We present data on changes in the transcription of genes coding for key ionic and carbon dioxide regulatory proteins. There was no evidence of gene regulation of either selected carbonic anhydrases (CAx genes) or the alpha subunit of sodium potassium ATPAses (ATP1A genes) in individual bivalves collected from the CO2 gas release site, in either species. In the common mussel M. edulis there was only evidence for changes with time in the expression of genes coding for different classes of carbonic anhydrase. It was therefore concluded that the effects of the plume of elevated pCO2 on ion-regulatory gene transcription were negligible in both species. Whilst the analysed data from this current study do not constitute an impediment to the continued development of sub-seabed CCS as a climate mitigation strategy, further modelling is necessary to predict the consequences of larger or longer term leaks. Further analysis is also required in order to constrain the potential physiological impacts of gas leaks to benthic infaunal species and understand the mechanism of possible avoidance behaviour recorded in burrowing heart urchins Echinocardium cordatum (Pennant, 1777). This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Nicola Pratt et. al. Doi:10.1016/j.ijggc.2014.10.001.

  • Categories  

    This poster on the UKCCSRC Call 2 project Novel reductive rejuvenation approaches for degraded amine solutions from PCC in power plants was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-189. Aqueous amine scrubbing is currently considered to be the best available technology of carbon capture for both pulverised fuel and natural gas power plants. A major problem is the thermo-oxidative degradation of chemical amine solvents used, leading to a range of operational problems and the generation of large quantities of hazardous aqueous waste. However, no existing technologies are able to effectively deal with these problems particularly the handling of the toxic waste solvent streams. The conversion of the degraded amines back to usable solvents or saleable products has been regarded as a novel effective way for cost reduction.

  • Categories  

    Many of the research results from the SACS and CO2STORE projects are published in the scientific literature but in a somewhat fragmented form. This report consolidates some of the key findings into a manual of observations and recommendations relevant to underground saline aquifer storage, aiming to provide technically robust guidelines for effective and safe storage of CO2 in a range of geological settings. This will set the scene for companies, regulatory authorities, nongovernmental organisations, and ultimately, the interested general public, in evaluating possible new CO2 storage projects in Europe and elsewhere. The report can be downloaded from http://nora.nerc.ac.uk/2959/.

  • Categories  

    This presentation on the UKCCSRC Call 2 project CO2 Flow Metering through Multi-Modal Sensing and Statistical Data Fusion, was presented at the UKCCSRC Edinburgh Biannual Meeting, 15.09.2016. Grant number: UKCCSRC-C2-218.