From 1 - 10 / 71
  • Categories  

    Posters and presentations from the UKCCSRC Call 1 Project: Mixed matrix membranes for post combustion carbon capture (Mar 2013 to Dec 2015). Membrane processes are a promising alternative to the more classical post-combustion capture technologies due to the reduced maintenance of the process, the absence of dangerous solvents and their smaller footprint. This project aims at supporting the development of new mixed matrix membranes for post-combustion applications. Mixed matrix membranes (MMMs) are composite materials formed by embedding inorganic fillers into a polymeric matrix in order to overcome the upper bound and combine the characteristics of the two solid phases: mechanical properties, economical processing capabilities and permeability of the polymer and selectivity of the filler. Despite several studies on the concept, the interactions between the two phases and their effect on the transport properties are not well understood. Yet, this fundamental knowledge is crucial in order to design the reliable materials needed for real-world-applications.

  • Categories  

    This poster on the UKCCSRC Call 2 project, The Development and Demonstration of Best Practice Guidelines for the Safe Start-up Injection of CO2 into Depleted Gas Fields, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-183.

  • Categories  

    This is THE first CO2 storage publication produced in the UK. The Association of the Coal Producers of the European Community are agreed that immediate action is required to reduce the build up of greenhouse gases in the atmosphere (Harrison, 1990). This is considered necessary even though the effect of these gases on global climate and the human race, are very uncertain mainly because the factors and processes affecting climatic change are poorly understood. http://nora.nerc.ac.uk/511485/

  • Categories  

    Full proposal cover sheet for scientific drilling (852-CPP) 'GlaciStore: Understanding Late Cenozoic glaciation and basin processes for the development of secure large-scale offshore CO2 storage (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2014. The full proposal cover sheet document is publicly available from IODP; the submitted full proposal document is restricted to the proponents for publication and for review and response from IODP. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 30 proponents are from research and industry organisations in the UK, Norway and USA (BGS, Institute for Energy Technology, Lundin Norway AS, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh, University of Oslo and University of Texas at Austin). The full proposal cover sheet states the names of proponents of the ‘GlaciStore’ consortium and contact details for the lead submitter of the bid. The full proposal cover sheet comprises: an abstract of the submitted full proposal including description of project funding support as a Complementary Project Proposal: describes and states the scientific research objectives; summarises proposed non-standard measurements; tabulates details of the 13 proposed drill sites (revised from pre-proposal stage) to address the scientific objectives. The objectives are to investigate: glacial history and sedimentary architecture; fluid flow and microbial processes in shallow sediments; and the stress history and geomechanical models for strata that have experienced multiple glacial and interglacial cycles. The table of proposed drilling sites includes the co-ordinates of the position and water depth at each proposed site, the objective for drilling and sampling and the depth to achieve the objective. The proponents, their affiliation, expertise and role for the submission are listed. UKCCSRC Grant UKCCSRC-C1-30.

  • Categories  

    Full proposal for scientific drilling (852-CPP) 'GlaciStore: Understanding Late Cenozoic glaciation and basin processes for the development of secure large-scale offshore CO2 storage (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2014. The proponent 'GlaciStore' consortium comprises research and industry organisations from the UK and Norway. The full proposal describes the relationship of the proposed research with the IODP science plan, regional background and previous work, and describes and illustrates three scientific objectives. The objectives are to investigate: glacial history and sedimentary architecture: fluid flow and microbial processes in shallow sediments; and the stress history and geomechanical models for strata that have experienced multiple glacial and interglacial cycles. The drilling and sampling strategy, standard drilling and logging operations, and the specialist measurements expected to be taken are described. Related initiatives and wider context of the proposed research also the initial and planned strategy for support from industry and government are outlined. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 30 proponents from the UK and Norway (BGS, Institute for Energy Technology, Lundin Norway AS, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh and University of Oslo) and their expertise are listed. The full proposal is a pdf format file. This is restricted to the proponents for publication and to progress to a revised full proposal accepted for drilling by IODP. UKCCSRC Grant UKCCSRC-C1-30.

  • Categories  

    The RISCS (Research into Impacts and Safety in CO2 Storage) project assessed the potential environmental impacts of leakage from geological CO2 storage. Consideration was given to possible impacts on groundwater resources and on near surface ecosystems both onshore and offshore. The aim of the project was to assist storage site operators and regulators in assessing the potential impacts of leakage so that these could be considered during all phases of a storage project (project design, site characterisation, site operation, post-operation and site abandonment, and following transfer of liability back to the state). A secondary objective was to inform policy makers, politicians and the general public of the feasibility and long-term benefits and consequences of large-scale CO2 capture and storage (CCS) deployment. The Final Report can be downloaded from http://cordis.europa.eu/docs/results/240/240837/final1-riscs-final-report-final.pdf.

  • Categories  

    The objective of the EU SiteChar Project was to facilitate the implementation of CO2 geological storage in Europe by developing a methodology for the assessment of potential storage sites and the preparation of storage permit applications. Research was conducted through a strong collaboration of experienced industrial and academic research partners aiming to advance a portfolio of sites to a (near-) completed feasibility stage, ready for detailed front-end engineering and design and produce practical guidelines for site characterisation. SiteChar was a 3 year project supported by the European Commission under the 7th Framework Programme. The Final Report can be downloaded from http://cordis.europa.eu/docs/results/256/256705/final1-sitechar-finalreport.pdf.

  • Categories  

    The CO2 storage operation at Sleipner in the Norwegian North Sea provides an excellent demonstration of the application of time-lapse surface seismic methods to CO2 plume monitoring under favorable conditions. Injection commenced at Sleipner in 1996 with CO2 separated from natural gas being injected into the Utsira Sand, a major saline aquifer of late Cenozoic age. CO2 injection is via a near-horizontal well at a depth of about 1012 m below sea level (bsl) some 200 m below the reservoir top, at a rate approaching 1 million tonnes (Mt) per year, with more than 11 Mt currently stored. The report can be downloaded at http://nora.nerc.ac.uk/9418/.

  • Categories  

    This report presents a set of pragmatic and workable generic procedures, suggested best practices and other recommendations and observations for the safe and sustainable closure of geological CO2 storage sites. These have been distilled from the results of the CO2CARE project and represent the most important messages that will be of benefit to Regulators, storage site Operators and other stakeholders. The report can be downloaded from http://nora.nerc.ac.uk/512805/

  • Categories  

    This presentation on the EPSRC project, DiSECCS, was presented at the Cranfield Biannual, 8.04.13. Grant number: Grant number: EP/K035878/1.