Raw CO2 and CH4 concentration data from a Picarro CRDS during experiments which tested the utility of methane as a tracer to quantify CO2 leakage into aqueous environments
Raw CO2 and CH4 concentration data from a Picarro Cavity Ring Down Spectroscopy (CRDS) during experiments which tested the utility of methane as a tracer to quantify CO2 leakage into aqueous environments, as described in Myers, M., Roberts, J.J., White, C., and Stalker, L (2019) ‘An experimental investigation into quantifying CO2 leakage in aqueous environments using chemical tracers’ Chemical Geology
Simple
- Date (Creation)
- 2016-09-01
- Citation identifier
- http://data.bgs.ac.uk/id/dataHolding/13607420
- Point of contact
-
Organisation name Individual name Electronic mail address Role University of Strathclyde
Jennifer Roberts
not available
Author University of Strathclyde
Jennifer Roberts
not available
Point of contact
- Maintenance and update frequency
- notApplicable
-
GEMET - INSPIRE themes, version 1.0
-
BGS Thesaurus of Geosciences
-
-
Tracers
-
Carbon capture and storage
-
NGDC Deposited Data
-
Accounting
-
UKCCS
-
Methane
-
Monitoring
-
- dataCentre
- Keywords
-
-
NERC_DDC
-
- Access constraints
- Other restrictions
- Other constraints
- licenceOGL
- Use constraints
- Other restrictions
- Other constraints
-
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
- Other constraints
-
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
- Language
- English
- Topic category
-
- Geoscientific information
- Begin date
- 2016-09-01
- End date
- 2018-09-01
Reference System Information
- Distribution format
-
Name Version .xlsx
.opju (Origin)
- OnLine resource
-
Protocol Linkage Name http://www.bgs.ac.uk/ukccs/accessions/index.html#item125824
- OnLine resource
-
Protocol Linkage Name http://dx.doi.org/10.5285/40172f68-1eaa-4374-a0ec-02ebe621a954 Digital Object Identifier (DOI)
- Hierarchy level
- Non geographic dataset
- Other
-
non geographic dataset
Conformance result
- Title
-
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
- Date (Publication)
- 2011
- Explanation
-
See the referenced specification
- Pass
- No
Conformance result
- Title
-
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services
- Date (Publication)
- 2010-12-08
- Explanation
-
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
- Pass
- No
- Statement
-
We used a benchtop experimental setup to explore how effectively methane, a common constituent of captured CO2 and of reservoir fluids, can aid the quantitation of CO2 leakage in aqueous environments. The experiment simulated gas leakage into sediments that mimic the seabed at the QICS experiment. We measured the partitioning of co-released gases under different environmental conditions and injection rates. The full method is described in Myers, M., Roberts, J.J., White, C., and Stalker, L (2019) ‘An experimental investigation into quantifying CO2 leakage in aqueous environments using chemical tracers’ Chemical Geology.
Metadata
- File identifier
- 81dc0e2e-97ae-2d17-e054-002128a47908 XML
- Metadata language
- English
- Hierarchy level
- Non geographic dataset
- Hierarchy level name
-
non geographic dataset
- Date stamp
- 2024-09-17
- Metadata standard name
- UK GEMINI
- Metadata standard version
-
2.3
- Metadata author
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Point of contact
- Dataset URI