• BGS Metadata Catalogue
  •   Search
  •   Map
  •  Sign in

Sample characteristics of foaming volcanic glass cylinders

These data present volume estimates from images (using the solid of revolution method from the cross-sectional area) of clasts expanding during vesiculation at high temperature. The data also contain clast interior volume estimates without the dense rind around the clasts (formed by diffusive outgassing, and estimated through time),l which is is calculated in Matlab. The methods are provided in more detail in Weaver et al., 2022. These data contain sample measurements (surface area), total clast volume calculation (using solid of revolution from clast cross-sectional area), degassed skin area (using imerode in Matlab and the diffusion data provided in the table) and skin volume (solid of revolution from skin surface area), and core surface area and volume from the difference between total clast and skin volumes/skin area. All data are presented in Weaver et al., 2022 ( https://doi.org/10.1016/j.jvolgeores.2022.107550), where further details of the methods can also be found. All data were collected and analysed at the University of Liverpool using clasts from Hrafntinnuhryggur, Iceland. The geographical location of the samples collected is of no relevance to this study, as the samples were selected for their physical attributes. All data were collected and analysed throughout 2021 and 2022. Volcanic glass cylinders of different starting sizes were placed in a furnace at high temperature (1006 oC). Two furnaces were used, either a tube furnace with open ends to allow imaging of the sample silhouette, or a box furnace with a sapphire window to allow imaging of the sample as vesiculation takes place. Cross-sectional areas are then converted to volumes using solid of revolution as vesiculation is isotropic. Diffusion modelling is used to quantify the development of the fully degassed rind around the sample and used to estimate the rind volume through imerode in Matlab and solid of revolution. Total clast, core and rind volumes are thus able to be retrieved. As magmas approach the surface of the Earth, volatile saturation in the melt decreases, which results in volatile exsolution in vesicles (vesiculation) and outgassing. The interplay between the amount of vesicles trapped in the melt and those that diffusively outgas from the surface is dependent on the volume to surface area ratio. Understanding the kinetics of outgassing and vesiculation is key to understand pressure build-up in magmatic conduits and effusive-explosive transitions at volcanoes.

Simple

Date (Creation)
2025-10-21
Citation identifier
http://data.bgs.ac.uk/id/dataHolding/13608566
Point of contact
Organisation name Individual name Electronic mail address Role

LMU Munich

Anthony Lamur

not available

Originator

British Geological Survey

Enquiries

not available

Distributor

British Geological Survey

Enquiries

not available

Point of contact
Maintenance and update frequency
notApplicable

GEMET - INSPIRE themes, version 1.0

  • Geology

BGS Thesaurus of Geosciences

  • NGDC Deposited Data

  • Diffusion

  • Furnaces

  • Volcanic eruption

dataCentre
  • NGDC Deposited Data
Keywords
  • NERC_DDC

Access constraints
Other restrictions
Other constraints
licenceOGL
Other constraints
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
Use constraints
Other restrictions
Other constraints

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.

Other constraints

Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"

Language
English
Topic category
  • Geoscientific information
Begin date
2021-01-01
End date
2022-05-01

Reference System Information

No information provided.
Distribution format
Name Version

Comma-separated values (CSV)

Text file (TXT)

Distributor contact
Organisation name Individual name Electronic mail address Role

British Geological Survey

Enquiries

not available

Distributor
OnLine resource
Protocol Linkage Name

WWW:DOWNLOAD-1.0-http--download

https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item190392

Data

Hierarchy level
Non geographic dataset
Other

non geographic dataset

Conformance result

Title

INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology

Date (Publication)
2011
Explanation

See the referenced specification

Pass
No

Conformance result

Title

Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

Date (Publication)
2010-12-08
Explanation

See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF

Pass
No
Statement

Volcanic glass cylinders of different starting sizes were placed in a furnace at high temperature (1006 oC). Two furnaces were used, either a tube furnace with open ends to allow imaging of the sample silhouette, or a box furnace with a sapphire window to allow imaging of the sample as vesiculation takes place. Cross-sectional areas are then converted to volumes using solid of revolution as vesiculation is isotropic. Diffusion modelling is used to quantify the development of the fully degassed rind around the sample and used to estimate the rind volume through imerode in Matlab and solid of revolution. Total clast, core and rind volumes are thus able to be retrieved. . The methods are provided in more detail in Weaver et al., 2022.

Metadata

File identifier
41e8be9b-a119-0fba-e063-3050940aa15b XML
Metadata language
English
Hierarchy level
Non geographic dataset
Hierarchy level name

non geographic dataset

Date stamp
2025-12-07
Metadata standard name
UK GEMINI
Metadata standard version

2.3

Metadata author
Organisation name Individual name Electronic mail address Role

British Geological Survey

enquiries@bgs.ac.uk

Point of contact
Dataset URI

http://data.bgs.ac.uk/id/dataHolding/13608566

 
 

Overviews

overview

Keywords

NGDC Deposited Data


Provided by

logo

Share on social sites

Access to the catalogue
Read here the full details and access to the data.




  •   About
  •   Github
  •