The amino acid composition of 20 aragonite samples precipitated in vitro in the presence and absence of amino acid (aspartic acid and glycine, separately and in combination), the dipeptide glycyl-L-aspartic acid and tetra-aspartic acid.
Amino acid compositions of aragonite samples precipitated from seawater, using a pH stat titrator using the constant composition technique between September 2021 and December 2022. Samples were precipitated from 330 mL of seawater with no biomolecules (control) or with a seawater concentration of 2 mM of aspartic acid (Asp), 2 mM glycine (Gly), 2 mM of both amino acids (Asp+Gly) or 2 mM dipeptide glycyl-L-aspartic acid (Asp-Gly) or from 33 mL of seawater with variable concentrations of aspartic acid (Asp) or tetra-aspartic acid (Asp4). Protein was extracted from the samples and run as free amino acids (to detect amino acids in free form) and as hydrolysed samples (to detect peptides). Data were collected to determine how changes in the calcification fluids of calcareous organisms affect aragonite precipitation. Data were collected by Giacomo Gardella, Sam Presslee and Nicola Allison and interpreted by Giacomo Gardella, Cristina Castillo Alvarez, Nicola Allison, Adrian Finch, Kirsty Penkman, Roland Krӧger, Sam Presslee and Matthieu Clog
Simple
- Date (Creation)
- 2024-10-30
- Citation identifier
- http://data.bgs.ac.uk/id/dataHolding/13608300
- Point of contact
-
Organisation name Individual name Electronic mail address Role University of St Andrews
Nicola Allison
not available
Originator British Geological Survey
Enquiries
not available
Distributor British Geological Survey
Enquiries
not available
Point of contact
- Maintenance and update frequency
- notApplicable
-
GEMET - INSPIRE themes, version 1.0
-
BGS Thesaurus of Geosciences
-
-
NGDC Deposited Data
-
Calcification
-
Aragonite
-
Sea water
-
- dataCentre
- Keywords
-
-
NERC_DDC
-
- Access constraints
- Other restrictions
- Other constraints
- licenceOGL
- Use constraints
- Other restrictions
- Other constraints
-
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
- Other constraints
-
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
- Language
- English
- Topic category
-
- Geoscientific information
- Begin date
- 2021-09-01
- End date
- 2022-12-23
Reference System Information
- Distribution format
-
Name Version CSV
- Distributor contact
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Enquiries
not available
Distributor
- OnLine resource
-
Protocol Linkage Name https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item186472 Data
- Hierarchy level
- Non geographic dataset
- Other
-
non geographic dataset
Conformance result
- Title
-
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
- Date (Publication)
- 2011
- Explanation
-
See the referenced specification
- Pass
- No
Conformance result
- Title
-
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services
- Date (Publication)
- 2010-12-08
- Explanation
-
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
- Pass
- No
- Statement
-
Artificial seawater was manipulated to alter pH and dissolved inorganic carbon concentration and the biomolecule, if used, was added. An aragonite seed was added as a surface for aragonite growth. A pH stat titrator monitored pH and dosed titrants (Na2CO3 and CaCl2) to replace the Ca2+ and CO32- consumed during aragonite formation. At the end, the solid was collected by filtration, rinsed with water and ethanol, dried at 40°C and stored. For amino acid analysis, samples were bleached, rinsed, demineralised and characterised by reverse phase HPLC in both free and hydrolysed form.
Metadata
- File identifier
- 262d3f79-ff3f-0e5f-e063-0937940a0ec2 XML
- Metadata language
- English
- Hierarchy level
- Non geographic dataset
- Hierarchy level name
-
non geographic dataset
- Date stamp
- 2024-12-05
- Metadata standard name
- UK GEMINI
- Metadata standard version
-
2.3
- Metadata author
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Point of contact
- Dataset URI