Triaxial compressive strength data of tests conducted at elevated temperature on hydrothermalised basalt samples from Osa Peninsula (Costa Rica) and oceanic crust basalt from Cocos Plate
This dataset contains raw (clean but not interpreted) triaxial compressive strength data of tests conductive at elevated pressure and temperature as outlined in "Vannucchi, P., Clarke, A., de Montserrat, A., Ougier-Simonin, A., Aldega, L., & Morgan, J. P. (2022). A strength inversion origin for non-volcanic tremor. Nature Communications, 13(1), 2311. https://doi.org/10.1038/s41467-022-29944-8". The data is provided in a .zip folder containing the files of 5 experiments that are accompanied by a README file for introduction. Files format is Microsoft Excel Worksheet (.xlsx) and data are tabulated. Each file contains the corresponding relevant sample’s details, and each column of data is clearly labelled, units included. For each experiment, time, axial force, axial displacement, axial stress, confining displacement, confining pressure, axial strain A and B, axial average strain, circumferential extensometer, circumferential strain, volumetric strain, internal temperature, and axial delta P were recorded. Triaxial testing was undertaken using the MTS 815 servo-controlled stiff frame inside a vessel capable of a confining pressure up to 140 MPa at the Rock Mechanics and Physics Laboratory, British Geological Survey, UK. The confining cell is fitted with external heater bands and utilizing utilizes cascade control from internal and external thermocouples (accurate to ± 0.5°C). An initial axial pre-load of 2.3 kN was applied, to ensure a stable contact and alignment of the platens. The confining pressure vessel was then closed and filled with mineral oil confining fluid. The axial pre-load was maintained whilst the confining pressure was applied at 2 MPa/min to 60 or 120 MPa; these values were chosen to approximately bracket the pressures at the up-dip limit of seismic nucleation, corresponding to 2 – 4 km depth (Arroyo et al., 2014). At this point, whilst held in axial force and confining pressure control, the rig was heated at 2°C/min to 60°C to approximate the average temperature conditions at the depth of the up-dip limit of seismic nucleation (Harris and Spinelli, 2010). The samples were then left for approximately 1 hour allowing thermal equilibrium to be reached throughout the confining fluid and the samples. Once stable, axial loading was initiated in constant axial strain rate control at a rate of 5.0 x 10-6 s-1 until macroscopic failure occurred or a significant amount of post peak-stress axial strain was recorded (between 2% and 5%). We note that one test was conducted at the higher temperature of T=120°C with a result within 2.5% of the strength at T=60°C (Table 1). As this is below the expected sample-to-sample variability, no further temperature studies were conducted. The axial load, axial load actuator displacement, axial stress (s1), differential stress (Q=s1 - s3), confining pressure Pc (= s2= s3), confining pressure actuator displacement, axial strain (eax), circumferential strain (ecirc) and temperature were monitored throughout at sampling frequencies of 1s and 0.5kN. File names are: YYYY-MM-DD_LabProjectNumber_SiteName-SampleNumber
Simple
- Date (Creation)
- 2023-09-26
- Citation identifier
- http://data.bgs.ac.uk/id/dataHolding/13608117
- Point of contact
-
Organisation name Individual name Electronic mail address Role Royal Holloway University of London
Alex Clarke
not available
Originator British Geological Survey
Enquiries
Distributor British Geological Survey
Enquiries
Originator British Geological Survey
Enquiries
not available
Distributor British Geological Survey
Enquiries
not available
Point of contact
- Maintenance and update frequency
- notApplicable
-
GEMET - INSPIRE themes, version 1.0
-
BGS Thesaurus of Geosciences
-
-
Compression tests
-
NGDC Deposited Data
-
Deformation (materials)
-
Stress
-
Basalt
-
Igneous rocks
-
Brittle deformation
-
Elastic theory
-
Strain
-
- dataCentre
- Keywords
-
-
NERC_DDC
-
- Access constraints
- Other restrictions
- Other constraints
- licenceOGL
- Use constraints
- Other restrictions
- Other constraints
-
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
- Other constraints
-
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
- Language
- English
- Topic category
-
- Geoscientific information
- Geographic identifier
-
COCOS PLATE [id=978000]
British Geological Survey Gazetteer: Geographical hierarchy from Geosaurus 1979 creation
- Geographic identifier
-
COSTA RICA [id=806000]
British Geological Survey Gazetteer: Geographical hierarchy from Geosaurus 1979 creation
- Geographic identifier
-
CR
ISO 3166_1 alpha-2 2009 revision
- Geographic identifier
-
CRI
ISO 3166_1 alpha-3 2009 revision
- Begin date
- 2016-05-09
- End date
- 2016-07-04
- Unique resource identifier
- WGS 84 (EPSG::4326)
- Distribution format
-
Name Version MS Excel
- Distributor contact
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Enquiries
Distributor
- Distributor contact
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Enquiries
not available
Distributor
- OnLine resource
-
Protocol Linkage Name https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item182409 Data
- OnLine resource
-
Protocol Linkage Name https://doi.org/10.5285/436290d4-a813-4797-bac4-1f8af4af7d78 Digital Object Identifier (DOI)
- Hierarchy level
- Dataset
- Other
-
dataset
Conformance result
- Title
-
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
- Date (Publication)
- 2011
- Explanation
-
See the referenced specification
- Pass
- No
Conformance result
- Title
-
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services
- Date (Publication)
- 2010-12-08
- Explanation
-
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
- Pass
- No
- Statement
-
This dataset contains raw (clean but not interpreted) triaxial compressive strength data of tests conductive at elevated pressure and temperature as outlined in "Vannucchi, P., Clarke, A., de Montserrat, A., Ougier-Simonin, A., Aldega, L., & Morgan, J. P. (2022). A strength inversion origin for non-volcanic tremor. Nature Communications, 13(1), 2311. https://doi.org/10.1038/s41467-022-29944-8". The data is provided in a .zip folder containing the files of 5 experiments that are accompanied by a README file for introduction. Files format is Microsoft Excel Worksheet (.xlsx) and data are tabulated. Each file contains the corresponding relevant sample’s details, and each column of data is clearly labelled, units included. For each experiment, time, axial force, axial displacement, axial stress, confining displacement, confining pressure, axial strain A and B, axial average strain, circumferential extensometer, circumferential strain, volumetric strain, internal temperature, and axial delta P were recorded. Triaxial testing was undertaken using the MTS 815 servo-controlled stiff frame inside a vessel capable of a confining pressure up to 140 MPa at the Rock Mechanics and Physics Laboratory, British Geological Survey, UK. The confining cell is fitted with external heater bands and utilizing utilizes cascade control from internal and external thermocouples (accurate to ± 0.5°C). An initial axial pre-load of 2.3 kN was applied, to ensure a stable contact and alignment of the platens. The confining pressure vessel was then closed and filled with mineral oil confining fluid. The axial pre-load was maintained whilst the confining pressure was applied at 2 MPa/min to 60 or 120 MPa; these values were chosen to approximately bracket the pressures at the up-dip limit of seismic nucleation, corresponding to 2 – 4 km depth (Arroyo et al., 2014). At this point, whilst held in axial force and confining pressure control, the rig was heated at 2°C/min to 60°C to approximate the average temperature conditions at the depth of the up-dip limit of seismic nucleation (Harris and Spinelli, 2010). The samples were then left for approximately 1 hour allowing thermal equilibrium to be reached throughout the confining fluid and the samples. Once stable, axial loading was initiated in constant axial strain rate control at a rate of 5.0 x 10-6 s-1 until macroscopic failure occurred or a significant amount of post peak-stress axial strain was recorded (between 2% and 5%). We note that one test was conducted at the higher temperature of T=120°C with a result within 2.5% of the strength at T=60°C (Table 1). As this is below the expected sample-to-sample variability, no further temperature studies were conducted. The axial load, axial load actuator displacement, axial stress (s1), differential stress (Q=s1 - s3), confining pressure Pc (= s2= s3), confining pressure actuator displacement, axial strain (eax), circumferential strain (ecirc) and temperature were monitored throughout at sampling frequencies of 1s and 0.5kN. File names are: YYYY-MM-DD_LabProjectNumber_SiteName-SampleNumber
Metadata
- File identifier
- 089b258b-84ed-24e8-e063-0937940a88b8 XML
- Metadata language
- English
- Hierarchy level
- Dataset
- Date stamp
- 2024-12-06
- Metadata standard name
- UK GEMINI
- Metadata standard version
-
2.3
- Metadata author
-
Organisation name Individual name Electronic mail address Role British Geological Survey
Point of contact
- Dataset URI